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Foreword

This report has been prepared by the Communication Sciences
Laboratory within the Data Systems Division of Litton Systems* Inc., a
division of Litton Industries. The work reported here has been performed
over a period of 12 months, under Contract Number AF30(602)-2663, as
Task Number 451903 of Project Number 4519, entitled "Statistical Instru-
mentation Study". This project has been completed under the direction of
the Communications Directorate within the Rome Air Development Center.

Several individuals within the Communication Sciences Laboratory
have made major contributions to the study and development of high order
statistical estimation techniques reported here. The Probability Analyzer
breadboard device has been designed and constructed under the guidance of
Mr. Arthur Crooke; most of the theoretical studies have been conducted by
Mr. Thomas Crystal, Mr. William Floyd and Dr. Albert Nuttall; and Dr.
George Sebestyen has provided technical guidance for the entire program.



ABSTRACT

Several techniques for estirnating n-th order statistics of signals
are investigated, including curve fitting methods involving estimation of
average values of functions of signal amplitudes, and success counting
methods for which probabilities are estimated as the percentage time
that a specified condition exists.

One of the success counting methods is selected for implementation,
and a breadboard model constructed. This device will calculate fourth (and
lower) order Mbint and conditional probability density functions and distribution
functions for signals with bandwidth less than 10 Kcps. Provisiens are incor-
porated in the breadboard for calculating probability of any fourth order event
in signal space, through simple and inexpensive modification of one unit in the
device.
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1. INTRODUCTION

Problems in which high-order statistical characterizations of
signals are needed arise in many contexts, but the difficulties of measuring
and presenting appropriate data for such characterizations are often effective
barriers to their use. The absence of a device which would provide a
complete characterization of second order statistics of signals, for instance,
has led to the study of correlation between such quantities as estimates of
target range and azimuth estimates provided at the output of a radar. But
the correlation between two statistically fluctuating quantities may be not
only relatively uninformative for characterizing their joint behavior, but
also misleading if too much reliance is placed on the results obtained.

Moreover, for some computations there is no short cut for bypassing
calculation of the joint n-th order statistics of a set of signals for n fairly
large. Determination of the boundary in any multi-dimensional space which
results from a threshold applied to the likelihood ratio* is an example.

A variety of techniques for estimating first order statistics of signals**
have been implemented over the years, and in at least one case , a device
has been built to estimate up to third order statistics. In Section 2, several
of these techniques are described and evaluated for audio frequency bandwidth
signals. One of these techniques has been selected for implementation, and a
breadboard has been constructed. The capabilities and details of construction
of this device are described in Section 3.

Conclusions regarding the utility of the techniques studied, and
recommendations for utilizing the capabilities of the device constructed, are
presented in Section 4.

*[ 7

**Including those described in (3], [8], and [11].
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2. METHODS OF ESTIMATING N-TH ORDER STATISTICS OF SIGNALS

2. 1 STATISTICAL DESCRIPTION OF SIGNALS

Due either to a lack of knowledge, inability to discover the basic
mechanism, or the genuinely random character of a signal or process, an
exact deterministic description of a future event from past history is often
impossible. For example, it is virtually impossible to predict the outcome
of a thoroughly shaken die; yet theoretically, given the in.tial position of the
die and the movements of the shaking element, the next outcome of the throw
is determined. However, since the determination of the next outcome would
involve an exhorbitant amount of detailed computations, we often choose to
say that the outcome is random with the probability of any one particular face
being 1/6. Furthermore, we say that each outcome is independent of previous
results. In this manner, we obtain a complete (albeit approximate) statistical
description of the random process called die throwing. Whether or not this is
an adequate description depends on the symmetry of a particular die, and the
amount of shaking before throwing.

Similarly, with voltages which vary as functions of time, when there
appears (through a limited investigation) to be no underlying deterministic be-
havior, we characterize such processes by probabilistic statements. It is
possible and customary to define a hierarchy of probabilistic rules, each of
which is more general than the previous one, and the limit of which is defined
as a complete statistical description of the process.

2. 1. 1 First Order Descriptors

The first rule is the probability that at a time t, a voltage value s(t) will be
less than or equal to a given value x. This function, denoted Pl(Y. t), is called
the first order probability distribution, and is the most general first-order
statistic there is. From this quantity may be found other more simple first
order statistics such as the mean, variance, or Y-th moment of the voltage,
all at time t. Entirely equivalent to P 1 is the first order probability density
function (p. d. f. ), which is the derivative with respect to x of Pl, and the first
order characteristic function, which is the Fourier transform of the p. d. f.

2. 1. 2 Second Order Descriptors

The second rule is the joint probability that at time tP, the voltage is
less than x 1 , while at time t , the voltage is less than x2 . This function,
P1 (xl, t1 ; x2 , t 2 ), is the second order probability distribulion, and is quite an

information bearing quantity. For example, by letting x2 equal infinity, we
realize the first order distribution, but in addition, from P 2 we may calculate
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various cross moments such as E[s(t 1 )s(t 2 )] or E[s 2 ( I )S2 (t 2 )]. The first of

these two averages is the correlation function of the process {Nx(t) and has
proved to be very useful in filtering and prediction. * For instance, if the
correlation function depends only on t -tl; the Fourier transform of the cor-

relation function indicates directly where in frequency the power of the process
is located. The latter function is, of course, the power density function. Notice
that although P2 gives the correlation function and/or the power density spectrum,
P2 cannot in general be found from these latter quantities. That is, Pz is a much
more general second order descriptor. Again, by differentiation or Fourier
transformation, respectively, two equivalent descriptors obtained are the second
order p.l. f. and characteristic function.

2. 1. 3 Higher Order Descriptors

The first and second order descriptors can be extended to the n-th
order, where one asks for the probability that at time tk, the voltage is less
than Xk, k 1 1, Z, . .. ,n. This is the n-th order probability distribution:

Pn(Xl, tl;... ; xn, tn) 'E Pn(x, t). By letting some of the {XkJ equal infinity.

lower order distributions are obtained. The larger n is made, the more
complete becomes the description of the random process.

In many problems one is interested in describing the statistical
behavior of several processes or signals which are defined in terms of a
common parameter. (Usually, time is the parameter.) For instance, it may
be desirable to know the joint (second order) probability that voltage sl is less
than x, at time t, and voltage sZ is less than x2 at time t2 . In general, the
function Pn (x, t) can be interpreted as a joint probability distribution of n

signals each of which may be observed at an independently specified time.
By considering the n signals to be delayed versions of a single waveform, the
n-th order probability distribution of the'single waveform is seen to be a special
case of the more general interpretation of Pn(X, t).

In summary, an n-th order statistical description of signals is provided
by the probability that at time tk voltage sk is less than k# k = l, 2#..., in#

designated P , t). The voltages s, values { xj, and times {t may

or may not all be distinct.

• *See [ 9 ], for instance.



2~.1.4 Stationarity

When the n-th order probability distribution is a function only of time
differences, and not absolute time, for ali n, the process is called strict sense
stationary. Such processes are often met in practice and possess the helpful
feature of remaining "statistically constant" as time progresses. Thus, measure-
ments at one time are as good as, and equivalent to, those made at another time.
Naturally this property can be, and has been, utilized to simplify data collection
and processing.

When the process is not necessarily strict sense stationary, but

possesses a mean which is independent of time, and a correlation function
which is dependent only on time differences, then the process is called wide-
sense stationary. The effects of nonstationarity or estimation accuracy are
discussed in Section 2. 3.

2. Z METHODS OF ESTIMATING N-TH ORDER STATISTICS

In this section, several methods will be discussed by which higher order

statistical signal descriptors can be estimated. Before going into any details,
it is appropriate to point out an important qualitative aspect of the problem of
estimating statistical characteristics of signals. If a reasonably large amount
of time is available for processing the signals, then questions of optimal efficiency

of estimation methods in making use of a given sample size are not crucial. Only

if the time required to obtain a large amount of useful history of the signals is

high, do these questions deserve close scrutiny. With this in mind, we have
considered the selection of estimation methods to be based primarily on (a) the

versatility of the technique, and (b) simplicity and cost of construction and

operation of equipment which is required to implement any method.

There are essentially two basic approaches to the problem of estimating

an n-th order distribution function P (x,.t). The first approach involves the measure-n :. '

ment of average values of quantities which are related to the signal amplitudes, and

will be called the moment estimation approach. The second approach involves cal-

culation of the percentage of time that the signal amplitudes satisfy a specified set

of conditions, and will be called the success counting approach. Each of several

ways of exploiting these two approaches to the problem of estimating P n(X, t)

will be described in this section, indicating the versatility, relative accuracy

and simplicity of equipment associated with the technique.

The basic restrictions on signal sets which we shall assume for the

techniques to be consid-red are that (a) the amplitude of each signal is bounded

(the j-th amplitude, s, lies in the range Lj_< s j <_ Lmj; R.j Lmj - Lsj) and
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(b) the bandwidth, W , of each signal is less than a specified quantity W.

2. 2. 1 Moment Estimation Methods

It is well known that the n-th order probability density function, *

itn(x), can be obtained from a knowledge of -.11 moments of the signal amplitudes,

i. e., the average values of the products of powers of the signal amplitudes.

Specifically. p(x) is the Fourier transform of the characteristic function,

Fn(9 V' •29' . n) a Fn(J), and Fn() can be expressed in terms of the

moments by a power series:

so~ (k) nf n)i~ km

kno fkm) mal rm-ul

(k) n (1)

where Y IF k wk

{kj All Jsuch that mal

n In+k-ln

and x km a one of the I different moments of degree k, k ak.
m m m 1

This characterization is possible for many processes with finite moments. Thus,

conceivably a procedure for estimliting the moments of a process could be set

up, and the probability density function could be obtained by transforming the

resulting estimate of the characteristic function for the process. In practice,

however, only a finite number of moments can be estimated. The question then

arises: how is p (x) related (even approximately) to an incomplete power series

representation OF(!Ln) ? Unfortunately, except in cases for which the function

is already known (notably the Gaussian p. dJ. ), the answer to this question is in

*For convenience, we shall write Pn(x) and Pn(x) for Pn_(, t) and P_(x, t),

respectively, wherever it is not necessary to specify explicitly the times, t.
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general unknown. Therefore, if moments of a process are to serve as the
initial information bearing quantities from which an estimate of pn(x) is to

be derived, some other rationale for utilizing a finite number of moments
must be developed.

2. 2. 1. 1 Power Series Approximation

One method of utilizing estimates of a finite number of moments is to
attempt to approximate p(x) with a polynomial of the form

A.
q nj

Pn(X) p (X) ax . Z

n nq LI ajk X' 'Z xn
juo k=l

_n an n+j-1I

where I im j for all values of j and k, and k takes onAnj ( values,

each of which corresponds to some ordering of the possible values for the
n-tuples { il, i2. ... , in) , and q is called the degree of the polynomial. With

this approach, there are two parts in the problem of estimating a probability
density function:

1) Finding the coefficients, {a jkj, which provide a good fit of a

q-th degree polynomial to the true probability density function, and

2) Obtaining estimates (a jkI of these coefficients.

The result is an estimate, p (x), of the probability density function:
nq

A .
• Ji iz i

1nq(X) 2 n (3)nq a k xI xc2  ... xn

jwo kul

To solve the first part of this problem, we need a device for measuring

the error in some sense between the polynomial p nq(x) and pn(x). One such measure

is the integrated square of the difference between p (x) and p (3). where the
n6nq
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I

averaging is carried out with uniform gveighting over the region for which pn(x) is
non-zero. Denoting this quantity by e we haveq

*q S (Pn() - Pnq(X.)l 2 (4)
X

where X denotes all values of x for which Pn(X) is non zero. If it is desired
that pn(X) be approximated with high percentage accuracy over all of the region
X, then perhaps a better criterion is the integrated square of the relative error
between pn(X) and pn (X). This quantity, denoted by £ , can be written

qr

xn~x
E.qr p n(x) dx-. (5)

While there are other means of determining goodness of fit we shall limit our
discussion to these two.

No matter which method is employed, the general procedure for deter-
mining the form of the {a jkI is the same. To il.lustrate this procedure, it will

2
be carried out in detail using the measure c q Here, the problem is to choose

2 q
the {a kI such that sq is minimized, where

jk q

C dx (6)
q x - ajk 'l ...lxn ".

X j,,o k-l

2

(Weierstrass' theorem tells us that we can choose the (a I to make limr c 0
jk q

if the region over which pn(x) is non-zero is closed, and if pn(x) is

reasonably well -behaved.)
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2
Setting the first derivative of aq with respect to a (for which i a mY

j Z,..., n) equalto zero, for allr = 0, 1..., q, andr mx 1, 2,...Anr,

provides Nqn Anj _ equations in N unknowns:
j=o

q A nj

qik ... , qn

juo kal

where
whe)e mlk m2k m +k

0 (M) n ndx
jk 1 2 .

X

d " xI x2 . x Pn (x) dxm n "•

X

Or, rewriting these equations in matrix notation,

C •-d (8)

where

o 0I) C C•I) ... C(1) CI G0)... C(1)
01 12 In .n 1 22 q, Aqn

CM M C .. cMZ c 21 (2) C ,)..cM2
001 11 1I2 1' n 21 22 '' q, A qn

(Nqn) (qn): (qn)

01 11 ".' q
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and

a 0 1

a I

a 12

a 1 2

a Ind

a a21 and dd 2

a 2 2

dN
qn

aq, An

To solve for the {a ) it is sufficient to invert the matrix C, to obtain
jk

a _ I d (9)

Thus, if p n(x) is known, a q-th degree polynomial can best be fitted to Pn(x)

(in the sense of minimizing integrated squared error) by solving (9). However,
we do not know pn(x), and in fact are concerned with the problem of estimating

this function. This brings up the second part of the problem which is the esti-
mation of the vector a.

Each of the { xiI is assumed to lie in a finite restricted range, and

the elements of C are independent of p n(x) and can be calculated:

-a-_



n m +k +1 m +k +1
(i) V L (Ljkmv sv (0
jk m +k +1

W'lV V

The elements of d are moments of the amplitdes of the signals:

n

dm (

1,=1

To estimate the {ajk = a it is only necessary to estimate the {djm,
and use

A -l
a = G d (IZ)

Thus, to obtain an estimate of p (x) using this method requires that a device for

estimating all q-th and lower oraer moments of the signal amplitudes be developed,

and the inversion of an q) x (n+q) matrix For n > 1, the latter operation

will require the use of a general purpose computer. The main storage capacity
of most computers would serve to preclude this calculation for values of n and q

greater than 4.

The block diagram of a device which would provide estimates of moments

of stationary signals is shown in Figure 1. Each moment is estimated by a time
average over a finite interval, T, of the product of the powers of the {siJ involved. *
Specifically,

r1 mvs (t) dt ( 13)'

0 v=1

As indicated in Figure 1, a programmer could be incorporated in the moment

estimating device to automatically step the powers of the {siJ through all values
less than a specified degree, q.

"This method of estimating average values of quantities is shown in Section

2.2. 1. 3 to be near-optimum.
-I0-
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In reviewing the power series approximation method of estimating
pn(x) (or Pn(x)), there appear to be three major objections to its use for

n > 1. The first (and perhaps most important) objection is that preliminary
or partial results cannot be obtained; i. e., no part of the probability density
or distribution functions can be examined without going through a complete

A
set of possibly expensive and time consuming calculations for p nq().

The second objection is that for values of n and q greater than one, a
computer must be utilized to invert a matrix to obtain the desired coefficients.
This feature degrades the potential utility of a probability density estimation
device for performing a quick analysis of signals, unless a general purpose
computer is immediately available to the user.

The other major objection to this technique is that the construction of
an accurate power device and multiplier with wide dynamic range is a costly
undertaking. In addition to the method outlined above, there are a variety of

-12-



techniques for designing these devices, but as the order n becomes larger, the
accuracy requirements become so stringent that the equipment feasibility of
calculating higher order moments becomes doubtful.

There are several other factors which bear upon the accuracy attainable
with this approach to the problem (for instance, the effect of the limited processing
time, T) some of which are common to all methods of estimation. An examination
of moment estimation accuracy is reported in subsection 2. 2. 1. 3.

If another method of measuring closeness of approximation is used in
the power series method, then similar, but possibly less convenient results
are obtained. For instance, by minimizing the integrated relative squared

2 2
error, r qr , instead of c q , the solution for the {a jk is again &ven by (9),
but withqrqk

m +kI m 2 +k m +k1 2 n n
x x..1 2 n

x(_2 dx (14)
jk S W

and

m m mn1x x2 .. n

d X- 2 p ) n dx

mc~m

Apparently, there is no direct way in which either the { C. m} or the { d I can
jk m

be estimated when p (x) is unknown. Therefore, in addition to the lengthy matrix
calculations and cazTerTrome operations apsociated with an attempt to approximate

Pn(X) with a power series, one must be content to attempt to minimize a particular
measure of closeness of approximation to p(X).

2. 2. 1. 2 General Series Approximation

A natural generalization of the power series approximation is the

representation of pn(x) with a series of the form

-13-



M

P (X)= PnM(X) am fM(xW (15)

mao

where the {fm(!E) are known functions defined over the region X. Following

the same procedure as with the power series approxinra tion, we may choose
the coefficients (a M so that the integrated squared errorm

EA $ {n(E IJ Z dx (16)

x

is minimized, These coefficients are determined by

-1
a C d (17)

where

C jk f 5 f(X) f k1• W

and dj fj(x) pn(x) dx f W

for j, k 1, Z .... M.

By choosing the {fm(x)J to be orthonormal over X, this solution In simplified to

a = f (x), (18)m m

and the problem of estimatiug pn(x) with pnM(x) evolves into that of estimating a

with a . Then
m

M

P W a f (x) (19)
PriM'--. = 0, m"

m=o

-14-
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While the matrix inversion problem involved in the power series approximation

has been obviated, this approach still requires the construction of nonlinear

devices for determining PnMx).
nM~x)

One way to implement this technique is to choose the {f(x)} to be

separable functions of x; i. e.,

n

(x= ) 1 gm k Gk) (20)

k=l

where a unique index m is assigned to each n-tuple (mI, m2 ... , m ). If the

first order density function of each variate is to be approximated by q terms of

a series expansion in the g-functions, then an estimate of the n-th order process

can include up to M = qn terms. Estimates of the coefficients are now provided

by

n

A
am = "T [sk(t) ] dt (21)

T k=l

A

The estimates fa } can be obtained by constructing a device as

inn

indicated in Figure 2. As indicated, if all qn terms are to be included in
the approximation,

-15-
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I

then (nq) different g-function devices are required, since the series includes
n

terms of the form F gm N). It is conceivable that less than q terms could
kzi k

be used for the approximation to reduce equipment construction requirements.
However, this would definitely degrade severely the accuracy with which some
probability density functions could be estimated.

The major objections to the use of this method of estimation are (a) the
requirement to perform all of the calculations involved in an estimate of the
entire probability density function before any results can be obtained, (b) the
high accuracy requirements in constructing the g-function ddvices, and c) the
large number of such devices required for accurately estimating higher order
functions. The absence of a matrix inversion calculation makes this method
much more attractive than the power series approximation.

We have considered the above objections to the orthonormal function
series approximation method to be sufficient to remove it from consideration for
implementation on this project. However, for display purposes this method does
possess a novel feature which merits description.

Consider for the moment the problem of displaying the first order pro-
bability density function, pI(x). If q a M linear filters are constructed so that

the k-th filter has an impulse response, gk(t), then the estimate pI(t) can be

obtained as a function of time by summing the weighted outputs of these filters
when their common input is an impulse. As indicated in Figure 3, the weighting

coefficients are the (a 1.,Thus, ^l(t) is computed by

m

Pl(t) - ak 6 (t-T4 gk (T) dr

k=l

(ZZ)
m

kml

where the bracket symbols <> denote a finite time average of duration T.
T

-17-



This function of time can be displayed on an oscflloscope or in any other
conveniently readable way.

Although this display feature has attracted experimenters to the

orthonormal function series approximation technique for estimating first
order probability density functions*, its practical utility for use with higher
order statistics would be highly limited. First, only two-dimensional cross

sections of n(x) could be displayed, and these would have the abscissa defined

by xj x 1 + 6j, j X 1, ... , n, where 6 is a constant nf a given display. A

more important difficulty associated with this display method for use with higher
order statistics is the complexity of equipment required. The form of the display
device for n-th order functions is shown in Figure 4. Equipment requirements
include q linear filters, nq adjustable delays, and qn product devices. The
output of each linear filter is delayed n (nossibly all different) times and these
n waveforms are routed to qn-I different product devices. In the special case
nxl, no product devices are required; however, for higher order statistics the
utility of this display technique is tremendously outweighed by the equipment
complexity involved.

*See, for instance, (101.
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2. 2. 1. 3 Methods of Estimating Averages of Functions of Signals

To clarify and justify the method we have proposed in the two pre-

ceding subsections for estimating averages of functions of stationary processes,
we now consider a rather general question- regarding the estimation of f(x).
Specifically, suppose we observe a single member of a stationary random
process {Ie(t)) for a limited observation time T. What is the best method of
processing this data to obtain an estimate of f(x) ? Clearly the answer to this
question will depend on the criterion of "best" and on the class of allowable
operators on the process {fg(t)1. We will consider the class of linear operators,
and utilize the mean square error as an indication of estimation error.

As an example, suppose we are trying to estirnate the mean of the

process {s(t)}, according to the linear operator

m - h(t) s(t) dt. (23)

T
A

(Notice that as a special case, if h(t) were a comb of impulses, rn would be
formed as a sum of samples; thus, sampling is a subclass of the operators
we are considering.) In order that m be an unbiased estimate, we should have
(since { (t)} is a stationary process)

X 5h(t) (t) dt S h(t) mdt =m (24)

T T

giving

S h(t) dt 1. (25)

T

A
The problem then becomes that of minimizing the variance of m by choice of
h(t) subject to the constraint above. A calculus of variations technique yields
an integral equation for the optimum h(t):

S h(,')R(t-T))dT -C, t t T (26)

T



where R•T) is the autocorrelation function of s(t) and C is a constant. Now
2R(T) decays to a steady value for values Gf T approximately - or greater,2

where W is the bandwidth of the process { s(t) . Then if T >> • , an

approximate but very good solution, except for negligible end effects, is

h('r) = I , T c T. (27)

This is not the exact solution; however for TW >> 1, it performs
just about as well. * This solution indicates that one should not sample the
waveform s(t) at all, but use all of it according to

A I S s(t) dt. (28)

T

It may then be shown that the estimation error is approximated by

a(A) Z I" [R() - n] dT. (29)

The same result is obtained for the problem of estimating the average
value of any function of s(t), if R(t) and W are interpreted as the correlation
function and bandwidth, respectively, of the function of a(t). Thus the optimum
linear method of estimating f [EM] is to integrate the function over the
available time T, and divide by T.

To obtain some idea of the processing time, T, required to obtain
an accurate estimation with this method, we now consider an alternate method
which provides similar (but less) accuracy. Specifically, suppose that the
n-th moment of a stationary process, m., is estimated by sampling the n-th
power of the process periodic-lly and averaging the sample values. This is a

N

linear estimation procedure with h(t) u 4 6(t-ki), i.e.,
kT I

See [1 ]and[4J -22-
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N

n - k (30)

kul

•rhere {sk} is the sequence of N samples. - This estimate is unbiased, and if

the N samples are all statistically independent, the variance of the estimate
is given by

a (tAn) -& ' 2n- M n (31)

Now we do not know the {Mu n} ; in fact, we are trying to approximate them.

However we can get a rough idea of how the variances a 2 (Pny depend on n and
N by assuming specific forms for pl(x) and calculating the dependence. In

this manner, by combining the results, a rough quantitative estimate of the

number of samples N necessary to evaluate the various moments will be
obtained. We shall here assume only one particular form, Gaussian.

For a Gaussian distribution (zero mean)

0, n odd
S- (32)

n a n(n-l)(n.3)... (1), n even

2.

where a is the variance of the process. The variance of the estimate is then

obtained by substituting in the formula above. The relative accuracy is, for
n even,

A fnl 1/2
1_ _ .1I , _ __

a w n 1 ~ '/A (Zl T (33)f

Thus the number of terms, N, necessary to obtain accurate estimates of IA

increases as n increases. We can, from the above formula, however, determine

just how many samples are necessary to include higher order terms. For

example, to include the sixth order term with a relative accuracy of 5 percent,
18, 000 terms are necessary; of course, this number of terms gives better
accuracy for lower order terms. (For n odd, values of N intermediate between

values for neighboring even n values will be sufficient.)

-23-



For other forms of density functions, the number of terms, N.
necessary for a prescribed accuracy will differ from those above, although
not widely. For example, assumption of an exponential p. d. f. leads to
values of N different by rdughly a factor of two for low n.

An alternate method of establishing when a particular sample
size N is adequate, which makes no presumptions about the form of the p. d. f.
being estimated, is now discussed. This method has not been studied exten-
sively, but it is a powerful and important technique which merits consideration.
Suppose we are attempting to approximate 1.. The variance of the estimate is
then

2A 1 2
('2 ( 2 ) 7 (P ( )4- P2 (34)

Now we may put a bound on this quantity as follows: for a p. d. f. with a
limited dynamic range and prescribed second moment, we must have

_ 4 B' (35)

where B is the maximum value of I x . This may be seen by noticing that

B B

S4 x4 p(x) d x B2 x2 p(x) dx B2 I (36)
-B -,B

and in fact may be realized by

p*txi) 1 - 6 (x) + a- &(x - B). (37)

1 B 2 B

Therefore

a p 2ý :E (B - 2 ). (38)

and a bound on the variance of the estimate is obtained as a function of the
statistic itself. Therefore, as N is increased, andS 2 begins to stabilize,
this value may be substituted in the right-hand side of the above equation to

-24-



also place a bound on the variance. Thus, estimation of u2 carries along
with it an estimate of the variance of estimation! Notice that oniy a very
crude pre-estimate of 12 need by evaluated this way. For example, we
might take N1  100, obtaining 0. (1). For.a prescribed • (42), the above

equation might then indicate N2 a 500. As a check on this sample size, we

can lastly compute, for N2 = 500, a2 2 ()and see if this is satisfactory.

Notice that this method requires no presumption about the p. d. f. form, except
for B, the dynamic range, which can be quickly and easily evaluated.

This method of bounding the variance of an estimate, by using
approximate values of the statistic itself, can be extended to higher order
moments. It is expected that the bounds obtained become relatively weaker
as the order increases.

As an indication of the number of statistically independent samples
which may be obtained from a process in time T, we may take the Nyquist

I
rate: T a 1 . Thus, the relative error in estimation of the n-th moment2W

of a process { s(t)} with bandwidth W, is approximately

n 3

aPn). 22(9

The inclusion of higl~er moments in an approximation to pl(x) is thus seen to
impose a longer processing time for each moment in the estimation procedure.
For instance, (39) indicates that to estimate second and fourth order moments
of a 10 kc bandwidth process with a one percent relative error requires
T = 0.7 second and T = 5. 7 second, respectively. For a 100 cps process, these
times are approximately 1 and 9 minutes, respectively.

The difference between the optimum and sampling estimation methods
is probably not very great. For instance, for R(T) parabolic between the

1
origin and T -L , it can readily be shown that

-25-



6z l I) (sampling m ethod Y 3
= (40)

Za 2 1 (optimum method) 2

For higher order moments the difference may be larger, but it is expected
that (40) provides a reasonable estimate of the relative error associated with
an estimate of the n-th order moment of a process.

-26-
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2.2.2 Success Counting Methods

Another approach to the problem of estimating either p (x) or P (x)
consists of simply counting the number of "successes" in a numnger of trianis
of an experiment. For any process(es) it- would be possible to obtain an
n-tuple sample, s - (s1 , sz a an), by simply initiating the process

and recording the sample values taken at the appropriate times (s 1 at time
ti, etc.). In general, N statistically independent n-tuple samples of the
process s = (Skl' skZ ,r . , Skn) , k = 1, 2, . , N, could

be obtained by reinitiating the process after each sample. In this manner, it
would be possible to perform an estimation of pn(X) based on an examination of
N members of the ensemble of waveforms constituting the process. Specifically,
let

I if s falls in R
Yk a (41)

k 0 if sk falls outside R

where the region R contains all values of x' such that
XA

max -I I S (42)

and A is a (small) positive number. An estimate of pn(x) is provided by

N

SAn N Yk(
k=1

This estimate is the number of samples which fall in Rx divided by the

total number of samples (properly normalized for the given A). One justifica-
tion for this method is provided by the law of large numbers*, which states that

*[ 2 1, Chapter X.
-27-



Pr I Yk Pn(x) dx > C 0 (441
k'l R x,

as N --- o , where 9 is any positive number,
Now this method of estimating the value of Pn(x) at any given point x (as
contrasted with earlier methods of fitting a curve to pn(XI over all
be applied to all processes for which* n can

N

k-i

as N--ae.

A possible drawback to this brute force approach is that considerable
time may be required to generate each sample, and therefore an exhorbitant
delay may be encountered in completing the estimation of pn(x) at many points x.
If the process is nonstationary, then there may be no substitute for this direct

approach. However, if the process is stationary, then instead of dealing with
samples from many different mnembers of the ensemble of time functions, an
estimate could be based on samples taken from a single member of the ensemble.

The question naturally arises as to whether other procedures (besides

sampling) would be better for processing T seconds of a set of signals a(t) to
obtain an estimate of Pn(). Following the success counting approach we now
consider this question, restricting the processing methods to linear operations,
Specifically, to estimate pn(Xn as a constant" in the region Rx, A we define

p*(x) - Pr C R , (46)
n Xn

Ibid., p. 238.
**

This estimation will produce what is called a histogram approximation to

Pn(X).
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A "success" counting function can again be defined such that

1. if a falls in Ry W fi~s ~ , (47f
0, if s falls outside R

where the n-tuple s is actually a function o& time.
The function f(s) r-gisters whenever s (t) falls in the region R Again let

A be a (small) positive number. Then, the most general linear operation on
the limited data provided by f[ s(t)1 in an interval T is

W h(t) f[ s(t)] dt (48)

T

(Notice again that if h(t) were a comb of impulses, 0 n(x) would be a sun of
samples -- the usual "counting" method.) An unbiased estimate has

= pn(X) C h(t) f[s(t*] dt -= C h(t) dt
11 -) n S, j~t jrst7

T T (49)

1 -p(x) dx h(t) dt wPr (s R ) h(t) d
S ••,•S•, X, .. ., A S,,,

R T T

Using eq. (46), this provides the constraint:

S h(t) dt lle (50)

T

If we minimize a2 [•.(x)] by choice of h(t), we obtain the following iategral
equation for the optimum h(t):

S h() Rf(t-T) d-r c, t t T (s1)

T

-29-



where

Rf(t-T0- f8.(t) I f [:(T) ]. (52)

Again, the correlation of s (t) extends only over roughly an interval L, where
2

W is the bandwidth of s(t). If T >> 2 , an approximate solution for h(t) is

h --- ) tc T. (53)T& n

Thus when TW >> I (many Nyquist intervals in the observation interval),
optimum estimation is obtained by the equation

n 0 (X f[ s (t)] dt. (54)

T

This estimate is the percentage of time that S(t) E R while t c T, weighted
according to the value of A chosen.

In summary, if TW >> 1, the best way to use a given amount of
continuous data i. e., a segment of s (t%• for estimating pn'(x) is to weight
all of it equally.

To implement this method would require the construction of a device
consisting of an integrator followed by a multiplier. The integrator would be
required to have a wide dynamic range in both output voltage and integration time.
The output voltage dynamic range is a function of the dynamic range of the proba-
bilities to be measured. A 40 db range would be a minimum requirement. The
integration time is a function of (a) the bandwidth of the signals being measured,
(b) desired accuracy requirements, and (c) the probability being measured.

The same result was obtained for other statistics (averages of functions of

x) of stationary signals in Section 2.2. 1. 3 above.
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As the number of cells (used to cover the signal space) increases,
the probability that a set of signals will fall in a given cell decreases; e. g.,
for a 4-th order uniform probability density function with 3 bit quantization
in each dimension, the probability that the input signals will fall into a given
cell is 1/4096. If such cells as well as those with probability near unity are
of interest, and if, in addition, a wide range of signal bandwidths are to be
considered, then the dynamic range of the integration time would be greater
than 104. The construction of an integrator within tolerances imposed by
these requirements would be a formidable task.

Fortunately, the difficulties associated with the optimum success
counting method of estimation can be overcome through the use of a non-
optimum, but still efficient technique involving sampling the signals, a (t).
Specifically, the optimum method of estimating the probability that s(t)
falls in any specified region", R , may be approximated by a general]iza-
tion of eq. (43):

N

Pr {s e R} R • f[s(tk)1. (55)

k=l

where f(s)= 1 if s e R and f(s) =Oif s R.

That this estimate is nearly equivalent to the optimum ore is indicated by

equation (4e). The utility of this method follows from the use of digital
circuitry. The most significant advantage derived from the use of digital
circuitry is in the flexibility of the digital integrator (counter): the dynamic
range and resolution can be doubled by the addition of a single stage; the
integration time cax be varied either by the addition of counter stages or by
changes in clock frequency; and there are no drift problems. Some fringe
benefits derived from the use of digital circuitry are: (a) the success regions
can be conveniently stepped automatically from one cell to another; (b) the
results can be easily presented in a form convenient for entry to a computer;
(e) the output data can be easily normalized to provide equal resolution of
both low and high probabilities.

2. 2. 2. 1 Parallel Processing With a Digital Computer

Having decided that periodic samples of a set of signals a(t) will
form the basis of an estimation, there are two alternative ways of processing
these samples. The first, called parallel processing (Figure 5), consists of
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I

sampling s(t), analog to digital conversion of the sample values, changing
the digital format, and inserting the resulting data into a general purpose
digital computer. The computer would then be programmed to count all
the successes occurring in specified regibns to produce an estimate of
p (xi-, Pn(x) or, in general, Pr {s e R

n~ n~

To estimate the practical limitations imposed on this technique by
the characteristics of a general purpose computer, suppose the available
main storage capacity is equal to 4096 computer words. * With this capacity,
the data will have to be read into the computer in segments. Assuming that
half of the storage capacity is used for recording a histogram estimate of

n (x), and the other half is used to ?tore a segment of data, the signal space
X may be partitioned into at most (2048)w cells, where each computer word

V
is composed of w bits, and Pn(x) is recorded with v-bit accuracy per cell.
With the CDC 160 computer, w u 12 bits per word, and the total number of
cells allowable by a 6-bit quantization of pn(X) in each cell, is approximately
212 cells. To estimate an n-th order probability density function with a
histogram based on a cell structure with q-bit accuracy in each variate, a
total of 2 nq cells are required. Thus, we obtain the restriction:

nq 12 (56)

A value of q • 3 would seem to be a minimum resolution capability; this quanti-
zktion would allow for the computation of up to fourth order probability density
functions.

The time required to collect and process data with this technique is,
of course, largely determined by the computer utilized. However, the cost
of operating the computer may be approximately the same for different com-
puters. As an illustration, consider the Recomp II and the problem of
estimating a fourth order probability density function with 3-bit quantization
per variate, and 5-bit accuracy of representing n'(x) in each cell. By
assigning two of the 24. 3 , 4096 cells to a single computer word, approxima-
tely half of the main storage (2048 words) is made available for raw digital
data input. Since each sample consists of 12 bits, approximately 6000 samples

As is the case with the Packard Bell 440, Recomp II, CDC 160, and
other computers.
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of data can be handled in a single, continuous segment. The input data rate

is limited for this computer to 60 words per second, or 180 samples per
second; thus each segment of data can be read into the computer in approxi-
mately thirty seconds. If 219 samples are processed , then approximately
80 segments of data would have to be processed. The total read-in time
would therefore be less than one hour. The processing time to calculate
probabilities would probably be at most an order of magnitude longer.

Implementation of the parallel processing technique requires only
the construction of sampling, analog-to-digital conversion, and digital format
conversion equipment. However, a possibly major drawback to this method
of probability estimation is its inherent reliance on a general purpose
computer. If a computer is not available, then a probability estimation
cannot be accomplished. Another unattractive feature of this method is the
requirement to obtain and store a large quantity of data in the process of
obtaining a probability estimate. Unless the signal samples can be fed
directly into the computer, some form of intermediate storage is required.
Assuming again the necessity for 219 samples*, and using 3-bit quantization
of each of four signal amplitudes, more than 6 million bits would have to be
stored for each probability calculation. If paper tape is used as the inter-
mediate storage medium with 6-bit characters, then more than eight thousand
feet of tape (or sixteen 500 foot rolls) would be required for each probability
calculation. In addition to the possibility of introducing errors, the increased
processing time for punching and reading the data would be significant --
as much as 5 hours for punching.

Because of the desire (for this study) to make the probability analyzer

independent of other computational aids, and the intermediate storage problem,
we have chosen the other method of implementing the success counting proba-
bility estimating technique, namely serial processing with a completely self-
contained device.

A number estimated (in Section 2. 3.2) to be sufficient for a cell structure
with 4096 cells.

Ibid
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2. 2. 2. 2 Serial Processing with a Self-Contained Device

Construction of a self-contained device for simultaneously calcula-
ting the number of samples which fall into each of a large number of cells
in signal space is precluded by its cost, if the number of cells, c, is very
large (as it will be for n > 1). We must therefore be content with a device
which utilizes a period of time, T, for estimating the probability that a
falls in a single cell, and repeats the process for every other cell examined.
The block diagram of such a serial estimation device is shown in Figure 6.
The first operation performed on a(t) (by the success region detector) is the
registration of intervals during which s(t) falls in an n-dimensional region, P,

as dictated by equation (55). The result of this operation is a suecess
waveform, which takes on the value 1 at times when s (t) *- R . and zero at
other times. This waveform is sampled periodically"(roughly at the Nyquist
rate) until a specified number of samples, or trials, have been taken. The
number of successes obtained and samples taken are recorded in a Success
Counter and Trial Counter, respectively. By digital operations on the
contents of these two counters, a number representing the ratio of successes,
nh,to total number of trials, nt, is obtained. This quantity is the estimate
of the probability that sa R.

The flexibility of this type of device is unsurpassed by any of the
other methods of estimating higher order statistics of signals. By adjust-
ment of the region R, any one of p (x), P (x), or in general,T•r {s R Rn ., n•.,

may be calculated. Also, there is no limitation to stationary signals (although
samples may no longer be obtained at the Nyquist rate from nonstationary
signals ). Perhaps most important, either partial or preliminary results
can be obtained without having to perform a complete calculation of (nx)
the value of •n(x) cin be ascertained in a few selected cells, or the cell size
can be set at a large value to obtain a coarse, but possibly informative,
preliminary histogram.

With this method of probability 'estimation, a significant intermediate
data storage problem will never arise, even if further processing of the
results of an estimation are desired. At worst, the results of a probability
density estimation will produce (cy) bits of data, where c is the total number
of cells and Pn(x) is represented by v-bit quantized numbers. Assuming the
previously mentioned numbers (c = 12 and v w 6), storage of a complete pro-
bability density function would require less than one-tenth of a roll of tape.

The effects of nonstationarity of signals on accuracy of estimation are
discussed in Section 2. 3. 4.
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The success region detector can be implemented in many different
ways. One fairly general approach to this problem is outlined in the next
subsection. Following this is a statement of the manner in which the rate
at which samples should be taken from a set of signals to minimize pro-
cessing time. Following this, in Section 2. 3, is a discussion of sources
and potential magnitudes of errors associated with the serial processing
success counting method of estimation.

2.2.2. 3 Establishment of a Success Region

As indicated in Figures 5 and 6, the initial step toward estimating

the probability, Pr {i e R}, of a set of signals falling in a given region, R,
is the establishment of a success region detector. In practice, the region of
interest may take on a variety of forms. In error probability calculations,
for instance, it is often the case that R is defined as all values of x for which
x 1 xj, j i 2,... , n. Another region of interest is that for which11 n
nx2 

< K.

i -S~Jul

In general, it is desired t.hat a success region detector be flexible
enough to accommodate all conceivable forms of the region, R, but of course
this is precluded by the cost of such a device.

One comprbmise which is relatively easily implemented consists of

defining regions with hyperplanes, i. e., linear inequalities. With this

method a region R is defined as all points x for which

n

I xk ajk >ci j, - it2, ... ,im (57)

kul

where the {aik) constitute a set of mn constants which correspond to the region,
R. To indicate whether a sample value s falls in a given region, R, it is sufficient to

build m resistive adders and comparators, whose outputs are routed to an AND
gate. A device for implementing these operations for n=2 and m=3 is indicated
in Figure 7.
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The accuracy with which a region R can be approximated using
hyperplanes is quite dependent on the shape of the region. Obviously any
region which is bounded by hyperplanes can be implemented perfectly.
For instance, the regions associated with probability distributions or histo-
gram estimates of probability density functions (with hypercubic cells) can
be realized precisely, if the number of hyperplanes, m, is greater than or
equal to the number of variates, n, for distribution functions, or twice that
number, 2n for density functions. For regions bounded by curved surfaces,
however, errors in specifying the regions will result.

As an indication of the number of hyperplanes required to approxi-
mate success regions, the ratios of the volume of inscribed and circum-
scribed hyperspheres to the volume of a regular n-tope are shown in Table 1
for n a 2 and n w 3. For n w 2, the approximating region is a regular polygon,
and for n = 3 the approximating region is a regular polyhedron (of which there
are only 5).

Table 1. Ratios of Volumes of Polytopes and Hyperspheres
for nu2, n=3, and Several Values of m

Polygon Approximation Polyhedron Approximation

m Circumscribed Inscribed Circumscribed Inscribed

3 2.42 .62

4 1.57 .79 8.15 . 30

5 1.32 .86

6 1.21 .91 2.72 . 52

7 1.14 .93

8 1. 11 .95 3.14 .60

9 1.09 .96

10 1.07 .97

11 1.06 .97

12 1.05 .98 1.50 .75

20 1.00 lo0 1.65 .82
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For two dimensional regions, a dozen straight lines would probably suffice
for most regions of interest, but for three or higher dimensional regions,
perhaps a few dozen hyperplanes might be needed for accurate representa-
tion of an arbitrary region. In practice, however, by using only m 2n
hyperplanes, a histogram can be constructed over which an integration
could be carried out for any region, with accuracy limited only by the cell
size chosen for the histogram. Thus, construction of a success region
detector with more than 2n hyperplanes would probably not be justified
unless a specific region is to be investigated for a variety of inputs.

2. 2. Z. 4 Sampling Rate Adjustment

In practice, selection of an appropriate sampling rate poses a
problem. If a set of signals, s(t), is sampled at a high rate, dependent
data are obtained which carry very little statistical information, perhaps
even in a large amount of data. On the other hand, sampling at too low a
rate, although yielding independent data, requires a long data collection
time. The guide to selection of an intermediate sampling rate is given
by the sampling theorem*; if a process is bandlimited to W cycles per
second, samples taken 1 seconds apart just suffice to reconstruct the

2W
time function exactly. That is, this rate of sampling, 2W samples per
second, does not miss any of the "important changes" in the time function,
yet does not yield a large amount of superfluous data.

In order to apply this theorem to the problem at hand, the bandwidth
of the process must be known. A quick rough overestimate 6f the bandwidth
W, perhaps by means of a spectrum analyzer, would suffice to allow for proper
adjustment of sampling rate.
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2.3 ACCURACY ATTAINABLE WITH THE SUCCESS COUNTING METHOD

The accuracy with which a probability distribution or density function
can be estimated using the success counting method is limited by the quantization
of signal space, the processing time, and equipment inaccuracies.

2. 3. 1 Quantization Error

Consider first the effect of quantization. If unlimited processing time
is available, and no equipment inaccuracies exist, then the true probability that
a set of signals lies in a particular region R in signal space canbe made arbitrarily
close to the ratio of (a) the number of trials which produced values of the signal
set within the region, ns, to (b) the total number of trials, nt. Explicitly, if nt

can be made arbitrarily large, then the law of large numbers states that it is
possible to make

n
pn(s) d(- -- < f (58)

R

for any given a > 0, and any region R in signal space. The histogram height, h,
n

for a given cell in signal space in defined as h = ,w
n Av where Av Is the volume

t

of the cell. The inequality (58) indicates that the volume under the histogram for
a cell is the same as the volume under thi true probability density function, i. e.,
the true probability of the signals falling in the cell.

For any region in signal space whose boundary lies only on boundaries
between cells, the probability of a set of signals falling in this region can be
estimated arbitrarily closely with the success counting method. However, for
a region whose boundary deviates from cell boundaries, the estimated probabilivy
of a set of signals falling in the region (obtained by integrating under the histogram)
can differ from the true probability. To obtain some feeling for the adequacy of a
given quantization and cell structure, we may introduce a quantity which provides
some indication of the degree to which the estimated probabilities (obtained with
histograms) differ from the trae probabilities. One such quantity is

D 5 In(X) - nX dx (59)

R-
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where

V = the total volume of signal space

x R RR... R

P (X) Pr {s( x 1 , sz _ x 2 ,...,S < xn
n1- n

A
P (= Z h (a s d

and R denotes the region in which signals can arise. The quantity D measures
the average absolute deviation of the estimated probability, Pn (x), from the true

probability distribution, Pn (X). For simplicity of illustration, consider the single

variate case, and assume that the range R1 is partitioned into c cells having the
same width, A. Then, the distribution function, Pl(x), is a function of the single
variable, x, and a histogram can be constructed which provides a piecewise linear
approximation to PI(N), as indicated in Figure 8, with c - 8. As noted above,
the estimated probability is equal to P1 (x) for x = iA, i = 1, 2,..., c, and gen-
erally differs from Pl(x) at other values of x.

The value obtained for the quantity D is dependent on the probability
distribution function. From the standpoint of maximizing D, the worst probability
distribution consists of a staircase function with jumps at the cell boundaries, as
indicated by the dashed curve in Figure 8. For this distribution function, the
average absolute difference between the true probability distribution and the es-
timated value of this quantity, is equal to 1c-. Thus to obtain an average deviation

of less than 0. 1 (in probability), it is necessary only to choose c > 5. In general,
for an n-variate distribution, the average absolute difference between the true
probability distribution and the estimated quantity is less than or equal to

[1 I- (n where c is the total number of (equi-volume) cells in the signal
c 2

space.

2. 3. 2 Error Caused By Finite Processing Time

As pointed out earlier, if unlimited processing time is available, then

the ratio of the number of "successes"' to the number of samples, or trials, en
be made arbitrarily close to the probability of a set of signal amplitudes falling
in a region R. The difference between the estimated and actual values will tend
to be greater for shorter processing times.
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For the success counting method of estimation, the processing time, T,
can be related to the number of statistically independents samples available in
that time. Specifically, a process {x(t)} which is limited in bandwidth to a range
W provides roughly N - ZTW independent samples in a time, T. Therefore, to
determine the error imposed by a given limited processing time, it is sufficient
to relate the error of an estimation to the number of independent samples used.

A
The customary method of measuring the error of an estimate, P, of a

probability, P, is in terms of the average square of the difference between these
quantities:

e = (P- P) N (60)

where N is the number of trials resulting in successes. The quantity N. has a
binomial probability den. ity function,

N

~ N pk(pN-k
p(N ).I (k)P(-) 6(N- k) (61)

k~o

and the quantity e is readily calculated:

ee P(l P62)eA•jN ]E

A more demahding measure of error which would reflect the relative accuracy
attained for any probability P, is provided by

e r-P 1 (63)

where S = the expected number of successes in N trials. For a given number of

trials, (63) indicates that the relative error is much larger for small probabilities.

It would, of course, be desirable to be able to know in practice precisely
the number of samples required to estimate an unknown probability with a specified
relative accuracy. However, from (63) we know only the relationship between the

*[Z ], p. 114.
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error and the (unknown) true probability. One way to obtain an estimate of the

A N
error (in estimating P) is to substitute the estimate, P - N , into the formula

for e r obtaining

TN s N(64)
r N N

For small values of P (the more difficult or time consuming range), we
would hope to have N << N and (64) would then become5

e r i~ (65)

Thus, to control the relative estimation error, it might be reasonable and

economical to operate the success counting device fot the period of time it takes
to produce a specified number of successes.

Although this approach to error control is appealing at first sight, we

have decided not to use it. The primary reasons for not using it are (a) the ex-
pression (65) is valid only if the accuracy of estimation is rather high anyway;
(b) the actual processing time would be a randomly fluctuating quantity; and (3) for

signals with bandwidth in the range 5 kcps - 10 kcps, the error can be controlled
in a way which doesn't involve these difficulties.

A convenient,and perhaps more realistic, method of controlling the esti-

mation error due to limited processing time, consists of simply incorporating a

wide dynamic range in the success and trial counters. If the input signal band-
width is so small, or the number of cells so large that an intolerably long pro-
cessing time is involved in computing probabilities with the maximum number of
trials available, then a succession of calculations using fewer trials could usually
establish the number above which the estimate can be expected to remain essen-
tially unchanged. While this procedure would economize on processing time,

there may exist probability calculations which cannot be accomplished with a
given maximum number of trials (except by combining the results of several

computations using independent data).
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To determine the maximum number of trials it would be reasonable to

attempt to record in the trial counter, we must consider the lowest probability
we would ever want to compute. A reasonable assumption for the latter quantity
is the probability of a set of signals falling in a single histogram cell defined for
an n-th order process, where n is the highest order to be considered. It was
suggested earlier that it would not be reasonable to attempt to calculate more
than fourth order statistics using a cell structure which quantizes each variate
into eight intervals. Thus, no more than 212 = 4096 cells would be involved.
If the minimum value of P to be encountered in any practical application is
assumed to correspond roughly to the uniform distribution of fourth order signal

12 -12
amplitudes over all of these 2 cells (P = 2 ), and if a relative error of at

most ten percent is allowed for probabilities down to 2 , then (63) indicates
1Z 19

that the number of trials should be on the order of 2 100 = 2 . The trial
and success counters in the success counting probability analyzer described in
Section 3, have been designed to accommodate this number of samples (or fewer).

2. 3. 3 Errors Caused By Equipment InaccuLracies

The two major types of errors introduced by imperfect implementation
of the success counting method are (1) warping of the success waveform, and
(2) sampling discrepancies resulting from the use of non-zero width sampling
pulses. Consider fixst the sources and nature of the first type of error. One
source of error in producing a success waveform is the improper location of
boundaries of the given region. In general, the error in estimation of a pro-
bability which results from improper location of success region boundaries is
dependent on the nature of the probability density function of the signals involved.
For a uniform probability density function defined over an n-dimensional cell
structure consisting of equivolume cells, specification of cell boundaries with
a percent accuracy results in a possible probability density estimation error of
na percent. Fortunately, even for the most fine-grained quantization desired
(8 levels per dimension), it is quite easy to establish a 1 percent accuracy of
boundary placement, which results in a 4 percent error in fourth order probability
density function estimation.

Other sources of success waveform distortion are switching delayi-in
the Schmitt trigers, varying delays in different input channels, and logic delays.
All of these delays serve to create shifts, compression, or expansion of the
success waveform. These effects are portrayed in Figure 9 for a sinewave,
using a cell width equal to one-fourth of the peak-to-peak amplitude of that
waveform. The ideal success waveform consists of pulses with width w, spaced
one period apart. The actual success waveform consists of pulses with one of
two widths, wI and w2 , spaced approximately one period apart. Every other
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pulse has width wl, corresponding to the upward movement of the sinewave

through the success region, and these pulses are interlaced in time with pulses
with width w 2, corresponding to the downward movement of the sinewave through
the success region. If many samples are taken at a rate which is incommen-
surate with the frequency of the sinewave, then translation of the pulses in the
success waveform will not affect a first-order estimation at all. For higher
order statistics, differences in translations in success regions for different
variates may tend to "smear" a probability density estimation. However, as
long as these differences are small in comparison with the minimum success
waveform pulse width, the effect on an estimate is negligible. Calibration
results which illustrate this effect are presented in Section 3.

The magnitude of the difference between the desired result and the
actual result obtained for the probability that the sinewave falls in the given

region is I [w 1 + w2 ] - w . In practice, the difference in switching times

of different Schmitt triggers will be the major cause of deviations in wI and w2
from w. However, for signals and regions for which roughly as many upward
traversals are produced as downward traversals, it is easily seen that error
cancellation takes place: w1 + w2 will very nearly equal 2w. This cancellation
effect takes place whether or not the desired success waveform pulse widths
are fixed. Therefore, the error introduced by distortion in the success wave-
form can be considered insignificant. This conclusion is verified by calibration
results presented in Section 3.

The other type of error is introduced through the use of non-zero width
sampling pulses. For a sampling pulse width 6, and a given width of a success
waveform pulse, w, the maximum effective change in the success waveforin

6 - 2AS
produces a relative error of -- , where IA is the minimum overlap betweenw

a counting pulse and a success waveform pulse which will be counted as a success.
This can be seen by noting that the counting pulse can be located at any point in an
interval of duration w + 6 - (2,U) to cause a success to be registered. To deter-
mine the net effect of this counting error on a probability estimate would require

6 -2/

that the quantity 6 be averaged over all possible values of success wave-w

form pulse width, w, weighting each value by the probability of that value occurring.
Except for deterministic signals, this problem evidently cannot be solved.

Fortunately this calculation can be circumvented by examining two
special cases: (1) the deterministic signal and success region which produces
the smallest value for w (and therefore the largest estimation error), and
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(2) a random process with known characteristics. In each case we want to
know the smallest value of w which can be expected to occur.

The deterministic signal which produces the shortest success wave-
form is a sinewave with the maximum frequency, W, for which it is desired to
obtain probability estimates. In this study, W = 10 Kcps. For a sinewave, the
minimum success waveform pulse width, w, is given by approximately

W ;- 5  -c seconds (66)

where c = the number of equi-amplitude cells covering the sinewave amplitude
range. For c z 8, this minimum pulse width is w° I= 4 M sec. Thus, if the
sampling pulse width 6 , is equal to 2 P sec, and the minimum overlap between
a counting and success waveform pulse which wvill produce a success is 0. 9 IA sec,
the relative error in estimation will be at most 5 percent. It should be pointed
out that this is an upper bound for the worst combination of deterministic signal
and success region, For othv r signals and success regions, the relative error
should be less than that implied by (66).

To check this result for a specific noise waveform, the probability
that the magnitude of the glope of a bandlimited Gaussian signal will be greater
than a givevi value, a,, has been found

Pr{ Islopel >cr ) 2R ( W--) (67)

x u

where O(x) E I e du, and where R is the range of signalramplitudes

-00 
R

being considered, and W is the noise bandwidth. By substituting the value a 1, ---
cw

in (67), tzhe probability of obtaining a success waveform pulse width less than w
can be written* Pr {success pulse width < w1

•cwW 
(68)

*Assuming that the noise waveform does not leave the success region at the
same extremity through which it entered the region.
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The probability that a success waveform pulse will be generated with a width
less than the minimum pulse width of a deterministic signal (w M w0 ), is there-
fore

Pr { success pulse width < w )
0

a 20 (-3) (69)

- 2. 6 x 10'3

Thus, it appears unlikely that a greater counting error will result with a noisy
waveform than is obtained with the high frequency sinewave. Results of cali-
bration tests using a sinewave are reported in Section 3.

2.3.4 Effects of Non-Stationarity of Signals

A few comments on the effects of non-stationarity of a process on a
probability density function estimate are appropriate at this point. First, for
a stationary process, as pointed out in the earlier sections, the accuracy of
p. d. f. estimates is limited primarily by the processing time, improving as the
processing time increases. However, for a non-stationary process, additional
errors can result, depending on the rate of fluctuation of the statistics. There
are three types of situations which can arise: where the time constant of the
statistical (non-stationary) fluctuations is small, intermediate, and large,
respectively, compared with the time required to estimate the entire p. d. f.

For the first case, where the time constant is small, the process will
pass through all its "modes" many times during the processing interval. In
this case, the output of the estimating device is an average p. d. f. of the actual
input process p. d. f. If the estimation procedure were duplicated on a different
serial section of input data, the same average p. d. f. would result, and an
observer would not even be aware of the rapid statistical changes in the input
process. This is not necessarily a deleterious effect; however, it is well to
be aware of its possible presence and effect on shoit term decisions.

At the other extreme of a large time constant, processing of the input
samples is completed before the input process changes its statistical behavior
significantly. (For example, the power in the input process may slowly increase
and double its value in an hour.) For this case, the estimation device yields a
local estimate of the true input p. d. f. If the estimation procedure were repeated
on a serial section of input data, gradual changes in the estimated p. d. f. would
appear, thereby indicating conclusively a non-stationary trend in the input data.
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SFor intermediate time constant values, significant input statistical
changes occur in a time comparable with the processing time. For this
situation, a sequential search of p. d. f.space can yield inconsistent results[(e. g., the area under the p. d. f. not equal to unity), caused by a "Jumpina"

about of the input process in signal space. The best way to alleviate (but not
eliminate) this situation is to record a section of input data which is long
enough to accurately evaluate the p. d. f. in one cell of p. d. f. space and rerun
the same record for each and every cell of p. d. f. space sequentially. If the
time constant is comparable with the processing time for one cell p. d. f.
estimation, there will still be significant changes in the total estimated p.d.f.,
record to record. However, local estimates of the p. d. f. will result which
will be consistent (sum up to unity) and will indicate accurately the degree of
non-stationarity and its rate of change.

a-7.
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3. A FOURTH ORDER SUCCESS COUNTING PROBABILITY ANALYZER

3.1 GENERAL DESCRIPTION

A breadboard of a success counting probability analyzer has been
constructed in accordance with the method* described in Section 2. 2. 2. 2
of this report. A photograph of the unit in shown in Figure 10. The bread-
board is basically a flexible, digital 12-th order binary probability analyser.
It is arranged functionally into four octal channels, making it a fourth order
analyzer with 3 bit quantization in each dimension.

The serial success counting method whose mathematical description
is given by (55), is used for measurement of Pr f Ra , e } , with twenty bit
trial and success counters. A block diagram of the device is shown in
Figure 11. Each of the four channels is provided with the necessary analog
and digital circuits required for establishing the success regionRx, ,"
and generating the success waveform f(s) as described by equation-(47). An
internal clock and a pulse shaper for an external clock are provided for
sampling of the success waveform at frequencies up to 20 kc with sample
sizes of 28 through 219 selertable in 12 steps.

The ratio of the numbers in the success and trial counters is
normalized and displayed in a row of lights as a 6 bit binary mantissa and
a 4 bit binary (l's complement form) characteristic. The output is also
automatically punched as two 6 bit characters on paper tape in a format
compatible with CDC 160 computer (the extra two bits are used as a control
code).

The size of the success region R for each component of a may

be set (independently for each channel) tol. 25, 2. 5, or 5 volts, and the cen-
ter of the success region may be stepped through 8, 4, or 2 equally spaced
intervals in each channel (step sift independently selected for each channel).
The cell location (center of the region R, A) may be stepped either manually
or auto.ratically to a new location at the end of each measurement. The
entire 4096 cell space or selected regions may be covered automatically by
appropriate settings of front panel controls.

See Figure 6 for a Generic Block Diagram of Method
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Figure 10. Probability Analyzer
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As indicated in Figure 12, two logical AND gates, A and B, are
provided with means for switching any combination of the four successf waveforms independently to either AND gate. Gate A is sampled by the
clock pulses and Gate B may be sampled by either success pulses from
the output of Gate A or delayed success pulses from Gate A. The trial
counter may be switched to count either clock pulses or Gate A success
pulses. The success counter may be connected to the output of either Gate
A or Gate B. Thus the analyzer may be set up to measure 1) the probability
of a success at Gate A, 2) the probability of a success at Gate B, given a
success at Gate A, 3) the probability of a success at Gate A and at a later
time a success at Gate B or 4) the probability of a success at Gate B given
that a success occurred at some fixed earlier time at Gate A, where success
at Gate A or Gate B may independently indicate the joint occurrence of up
to four input signals in corresponding independently set regions.

S3.2 DETAILED DESCRIPTION OF EQUIPMENT

3.2. 1 Basic Units of the Analyzer

The block diagram of Figure 11 shows the major units of the bread-
7 board. The function of the Success Region detector is performed by the

Cell Location Counter and the Success Indicator. The Arithmetic Unit
includes the Trial and Success Counters plus the control logic required to:
a) set the sample size, b) normalize the result, c) initiate the punch cycle
and d) automatically advance the cell location counter at the end of each
measurement cycle.

3.2.2 Success Indicator

A Simplified Block Diagram of the Success Indicator is shown in
Figure 12. A success waveform is generated for each channel by the use
of two hyperplane circuits (comparators), a digitally controlled reference
voltage, and two offset voltages + A ana - . One comparator has a

2 T'
"I" output when the input signal is less than the reference voltage plus A/2
and the other has a "I' output when the input signal is greater than the
reference voltage minus A/2. If both comparator outputs are "1" then the
success waveform f(s) is "1" and s is within the selected cell (or success
region) in that channel. The binary input which controls the reference voltage
comes from the Cell Location Counter (see Section 3.2.6). Both the cell
size, A. and the cell center in each channel can be set with an accuracy of
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1 better than_± 0. 5 percent with a long term stability (several days) of
better than 0. 5 percent. The effective cell size accuracy is degraded
near the upper frequency limit of the analyzer, to a worst came value of
10 percent at 10 kc.

A fourth position of the cell size control sets A * 0 and allows
for selection of either comparator so that the success waveform indicates
success for input signals greater than (or less than) the reference input.

- This position may be used for measurement of distribution functions.

Two independent 1-st to 4-th order success waveforms may be
obtained by switching any combination of the four first order success wave-
forms to either or both of two logical AND gates: Success Gate A and

* Success Gate B. The Gate Input Selector Switches may be set independently
* for each gate. The clock pulses are applied as a 5-th input to Gate A as

well as to the Mode Selector and Control Logic. The modified clock pulses,
"* applied to the 5-th input to Gate B, may be either the output pulses directly

from Gate A or delayed Gate A output pulses. The Conditioned Sample
Pulses are obtained either from the clock directly or from Gate A. The
Success Pulses are obtained from either Gate A or Gate B. The mode

S• selector is therefore able to set up the analyzer to measure any one of four
3 quantities:

1) P(A) the joint probability that the signals at the inputs of all
channels whose outputs are connected to Gate A will fall within the region
selected for their respective channels.

2) P(B/A): the conditional probability of a success at Gate B
given a success at Gate A, where success at Gate A or Gate B is defined
as in Mode 1.

3) IP(B, A delayed): the joint probability of a success at Gate A
and at some specified time later a success at Gate B,

4) P(B/A delayed): the conditional probability of a success at
Gate B given a success at some specified earlier time at Gate A.

A fifth position of the mode selector is made available for future
expandability of the breadboard, namely: P(A or B).

i -57-
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3.2. 3 Arithmetic Unit

The Success Indicator outputs (i. e., the conditioned sample pulses
and success pulses) are fed to the Arithmetic Unit where they are counted
in two 20 bit counters, the Trial Counter and Success Counter respectively.
Control circuits are provided to allow sampling to continue until the Trial
counter has reached a selected (by the Sample Size Selector Switch) integral
power of 2 between 28 and 219, at which time the counting is inhibited.
The completion of sampling is detected by the presence of a '!l" in the

selected (control) bit of the trial counter (and "O's" in all other bits). The
Sample Size Selector Switch also selects the Success Counter bit corresponding
to the selected Trial Counter Control bit plus the five next less significant
bits as the probability output.

On completion of the sampling process, the contents of the success

counter are normalized by shifting until the most significant output bit is "1",
or for a maximum of 15 shift pulses. The shift pulses are counted in the
least significant four bits of the Trial Counter (which are all zero on comple-
tion of the sampling interval), which therefore contain the characteristic of
the probability. The six selected bits of the success counter contain the
Mantissa. On completion of the normalization process, a pulse is trans-
mitted to the punch logic to initiate the punch cycle and to the cell location
counter to advance it to the next cell location.

3.2.4 Cell Location Counter

The Cell Location Counter consists of a 12 bit counter arranged as

four octal counters, one for each Success Indicator Channel. Each octal unit
functions as a separate counter with the overflow from the channel 1 counter
indexing the channel 2 counter, overflow from channel 2 indexing channel 3 and
so on through channel 4. Overflow from channel 4 stops the automatic re-
cycling of the Arithmetic Unit. Each octal unit has separate front panel
control of both initial and final locations, and would be reset to the initial
location at the start of a computation, count up to the final location, pro-
duce an overflow pulse, reset itself to the initial location, and repeat the
process until overflow from the channel 4 counter stops automatic recycling
of the arithmetic unit. A two bit location code is generated to indicate whether
the last advance pulse produces overflow from the first, second, or third
octal unit or no overflow.
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The Step Size may be set (independently for each channei) to step
through 1/8, 1/4 or 1/2 of the total range on each index (or overflow) pulse.
The output of each octal unit is connected to the most significant 3 bits of
the corresponding (4-bit) digital-to-analog converter in the succesa
indicator. The least significant bit is controlled by a toggle switch (next
to the step size switcht, and is used to shift the cell center to the upper
edge of one of the eight equal voltage intervals, when the step size is

* greater than 1/8.

The reason for the flexibility designed into the Cell Location
Counter is to allow for automatic stepping through selected Limited four
dimensional signal space to explore, in more detail, regions of particular
interest.

3. 2. 5 Punch Logic and Data Format

The punch logic serves to commutate the data into the paper tape
perforator and generate the necessary timing pulses to punch two 7 bit
characters for each measurement and a pulse to recycle the Arithmetic
Unit.

The output data is arranged as a 12 bit computer word compatible
with the CDC 160 computer. The least significant six bits are the Mantissa
and are obtained from the Sample Size Switch output. The next four bits are
the one's complement of the characteristic. The complement form is used
since the characteristic is always negative. By making the characteristic
the more significant part of the word (than the Mantissa) and using its comple-
ment form, a monotonic relationship between the probability and its binary
representation is maintained, thus simplifying certain computer processing
of a probability density function. The most significant two bits are the location
code generated in the Cell Location Counter and will be useful in checking the
data while entering it in the computer.

The computer word is punched as two characters, the most significant
half being punched first and indicated by a '1"" in the seventh hole position. A
typical tape for a Sine Wave, first order density function is shown in the
upper right of Figure 13. The numbers punched are indicated in a convenient
octal form as shown to the right of the tape. Four octal characters are used
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for two punched characters or one computer word. This notation is
convenient since the data can be easily typed out in this form using

standard programs. Only the least significant bit of the most significant
octal digit is part of the characteristic and so this digit should be con-
sidered as I for odd numbers (1, 3, 5, or 7ý and 0 for even numbers (0, 2, 4, 6).
Since the most significant 2 bits of this octal digit represent the location
code, this code can be obtained by subtracting I from odd numbers and 0
from even numbers and dividing by 2.

3.2.6 Use of Paper Tape Output

For convenience in processing the output of the probability analyser
in a digital computer, a paper tape punch has been provided with the bread-
board. The format of punched data has been chosen for convenience in using
the CDC 160 computer, as discussed in Section 3.2.5.

Even though the Probability Analyzer is a versatile device which
can provide probability estimates directly at its output, problems may arise

* for which further processing is required. Two types of analyses which are
especially useful for evaluating the characteristics of n-order statistics
(after the n-dimensional probability function has been calculated) are the
examination of two-dimensional cross sections, and identification of the
modes (high density regions) of a probability density function. A third
function which might be performed with a computer is computation of
Pr f s c R }, where R is a complicated region not easily instrumented in the
Success Region Detector, and where the probability density function, pn.x)
has been calculated in the Probability Analyzer.

To illustrate the manner in which operations such as these might be
performed using the paper tape output of the Probability Analyzer, flow
charts of programs for (a) inserting data into the computer, and (b) computing
and displaying two dimensional cross sections of joint probability density
functions, Ap(x) (all but two of the (xi) fixed), and conditional probability
densities, p ýjx fall xi, i J), have been included in Appendix I.

-61-



3.3 CALIBRATION DATA

3. 3. 1 D. C. Calibration Data

A simplified block diagram of the comparator circuits, which
determine the cell size and cell location, is shown in Figure 14. The
data for the final DC calibration of these circuits (taken about I week ptior
to delivery).is shown in Tables 2, 3, and 4. The cell location calibration
(Table 2) was made by measuring the input signal (from a precision voltage
reference source) required to set the output of the summing amplifier to
zero volts, for each binary input. Data for the two extremes and the center
point are presented. The worst case error for all points of all four channels
was less than 0. 1 percent of full scale. The data in Table 2 were rechecked
after delivery to RADC and all points were within 10 mv without further re-
adjustment.

The cell size data of Table 3 was obtained by adding a small
(50 mv p-p) low frequency sinewave to the DC input, setting the Binary input
to 1000 (see Table 2) and measuring the positive and negative input voltages
required to produce a square success waveform, f(s). The cell size indicated
in Table 3 are all within 1 percent of their nominal value. The values for the
1/8 cell size were rechecked after delivery to RADO and were all still within
the I percent tolerance and had not changed by more than 5 my from the
initial calibration points.

The Schmitt Trigger hysteresis (Table 4) was also rechecked at
RADC and all values were again within 5 mv of the initial calibration.

3.3.2 Low Frequency Sine Wave Calibration

A graphical method of calculating the histogram of the first order
probability density function of a sinewave using 3 bit (8 level) quantization is
shown in Figure 13. The cell numbers, binary representation of the cell
centers, and voltages of the cell boundaries are shown with the sinewave in
the upper left corner. The corresponding success waveforms f(s) are
shown (for each cell) below the sinewave. The probability for each of the
eight cells is shown in the table to the right of the success waveform in
decimal, binary, and octal form. The binary and octal forms are in the
normalized form available as the analyzer output, with the complement of the
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characteristic indicated. The x's in the binary form are location code
bits and may take on any value, depending on the channel being used.
and the cell being measured as well as the setting of certain switches.
A paper tape representation of a typical sinewave density function is shown
above the table.

For calibration of the analog circuits the density function of a low
frequency sinewave was determined by measuring the duty cycle of the
success waveform. f(s). Table 5 lists these results for all four channels
with a 100 cps sinewave. These numbers agree with the calculated values
within the accuracy (a few percent) with which the scope could be inter-
preted. A copy of a paper tape output from the Probability Analvser
automatic measurement of the data in Table 5 is shown in Figure 15. The
Cell numbers and octal representation of the punched data are shown next
to the tape. Note that the most significant octal characters are different
for each channel. This difference is the result of the location code bits.
which are different for each of the measurements. The results on this tape
are all within 1 bit (about 2 percent) of the calculated value (see sample
tape in Figure 13.

3.3. 3 High Frequency Calibration Using a 10 kc Sinewave

Table 6 gives the results of the analog measurement and Table 7

the corresponding digital measurement of the density function of a 10 kc
sinewave. These results were obtained at RADC after delivery of the equip-
msent. The worst case error was about 10 percent, however the digital and
analog measurements agree within a few percent. Slightly betterýresults
were obtained previously at Waltham. Some of the errors in the measure-
ments given in Tables 6 and 7 may be due to the 50 mv noise level (about
4 percent of the cell size) of the sinewave generator. As a result of the noise
level, the sinewave had to be set slightly less than 10 v pp in order to contain
the whole density function within the l 5v range of the instrument. Because
of time limitations and the relative signilicance of the errors the exact
cause was not tracked down.

-67-

L.



~~O~ U0.4 e

.0

U.

0 G 00 co 0 0 e

0 03

ZI.

-68-



U %wo00

0ou

0

'44

- (n %0 NO 0~ f- N0
N - 000 Go Noc

-69



(V4 n 14 - - 1 n mE

'.0 tr In n in o. i-tk

,~ en

-4 ý P-4 -4 -4 -4 -4-4

0 %A 1N -0 V n~$
o r- ' LA in i n %o'. t-

~~-4 4 -4- -4 .4 -

cn -- M. 14 N~NLA 0
'.0 '. Ln IA MA LA Q f-

-44

o,70



I
CELL OCTAL

Channel NUM8ER OUTPUT
1 00.0

000o : 0 0 14 73
0 o 13 65

00o0 2 13 54
SO8: 00 3 13 so

o: 00 4 13 so

0 

13

0 00 00 6 13 65
000000o 7 74 72

0000 0
00 "
0

Channel o oooo 0 34 72
2 0000 00 00 0000 00 0 1 33 65

0 000 002000 000 33 53
0 000 00 3 33 so

0 00 1
0 000 00 4 33 so

0 00%008: 00 5 33 53
0 000 00 6 33 65
00 00 0

000000o 7 74 720000 0

0
0

Channel oooo 0 54 73
3 0000 0

0 o 00 00 1 53 65080 00 0
oo0 0 2 53 540 000

00 00 00
0 00° 3 53 51

000000 4 53 51
0 00 0

0000 00 53 40000
00 00 00 6 53 6600 o000
0808:00 7 54 72

0
0

Channel oooooooooo ooo 0 74 72
ooooo 1 73 65
00000 2 73 54

000ogo80°o003 73 51
o01o: O8 4 73 so
o00: 00 5 73 54

0 000
00000 00 6 73 65
0880:00 00:0000 7 74 72
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3. 3.4 Noise Measurement

The density function of a noise generator output filtered by a
single pole 5 kc lowpass filter was measured for each channel with the
results shown in Table 8. The density function for the "Typical Channel"
was obtained by taking the mean or in a few cases the mode of the
four channels. The decimal equivalent of the histogram for the typical
channel ib given as well as a calculated histogram. The basis for the
calculations was a Gaussian distribution with zero mean and a value of
a chosen for best fitting of the typical channel curve (6. 64o-= 10 v). The
fit is good near the center cells and gets progressively worse at the out-
side cells. The ± 5 percent asymmetry of the curve suggests the possibi-
lity of non-symmetrical limiting which could occur in the analyser due to
differences in the recovery time from positive and negative overloads.
This source of distortion could be investigated (and removed) by limiting
the input signal (using fast recoverydiiode limiters) to the _± 5 volt range of
analyzer. The typical and calculated histogram from Table 8 are plotted
in Figure 16 for comparison.

As a check on the higher order capabilities of the analyzer the
joint probability of a success at Gate A and at about 1 ms later a success
at Gate B was measured where channel 2 was connected to Gate A and
channel 3 connected to Gate B and the previous noise signal connected to
both channels 2 and 3. With binary inputs to both channels set to cell 3.
the measured probability was, in octal form: 1355 which is exactly the
product of the probabilities given for the corresponding cell and channels
in Table 8.

3.4 EXPANSION CAPABILITIES OF THE BREADBOARD

3.4. 1 Modifications of the Analog Circuits

While the breadboard was designed to be a fairly versatile general
purpose probability analyzer, some limitations had to be imposed by cost
considerations. The limitations. however, are primarily in the analog
circuitry. Numerous simple modifications to these circuits could be made
to extend their usefulness in the solution of specific problems. Incorporation
of thbse modifications did not seem practical since their particular con-
figuration would be a function of the particular problem, and they might better
be made as temporary wiring changes than as unnecessarily complicated panel
controls.
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Figure 16. Histogram for Gaussian Noise Waveform
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One such modification would be provision for the generation of
irregularly shaped success regions. Since there are presently eight
hyperplane circuits in the equipment with convenient means for connecting
these circuit outputs to the success gates, only minor rewiring would be
necessary to provide for convenient insertion of additional summing
resistors.

A second modific ation would be to provide additional limiting
circuits so that the signals could be amplified further and examined in more
detail in narrower amplitude ranges of interest.

3.4. 2 Use of a Digital Comparator

As mentioned in the general description, the breadboard is a 12-th
order binary or 4-th order octal probability analyzer. A considerable
increase in its flexibility could be obtained by providing for the use of
digital comparators as well as the present analog comparators. This
modification could be accomplished very easily with the addition of a small
amount of additional wiring in such a way that either analog or digital
comparators could be plugged into the same connector, and the switching
would be automatic.

With this modification, any binary input could be applied to the
analyzer and compared with the cell location counter setting. The success
waveform would thus be "I" when both binary numbers are the same and
zero otherwise.

For example a 12 bit D-A converter could be connected between
the signal and the analyzer, and a high resolution first order density function
measured automatically with each conve'sion representing one sample.
With two 6 bit D-A converters a higher resolution second order density
function could be measured.

If a set of signals were A-D converted (using any combination of
A-D converters with up to 12 bits output) and the resulting set of numbers
recorded on a magnetic tape loop, then the tape output could be compared

S.•75-

II



with the Can Location Counter and a corresponding density function
calculated. This option would have the advantage of eliminating the
variation of signal characteristics with time which might be inherent
in an analog recording.

For pattern recognition problems it is often desirable to analyse
some analog waveforms along with the outputs of parameter extractors
which may have digital outputs. For such problems it would be convenient
to use one or more of the analog inputs to the analyser and at the same
time use digital comparators in the other inputs. With modificatione cited
above, such problems can be solved readily.
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4. CONCLUSIONS AND RECOMMENDATIONS

For estimating n-th order probabilities of the form, Pr (•# 1 .,
where n > 1, the success counting method of estimation is the most versatile
and accurate of the various methods examined. If extremely low probabilities
are to be calculated (as when investigating "tails" of distribution functions),
the sampling and counting technique utilizing digital circuitry is preferable
to the analog technique of integrating under a succe ss waveform.

The choice between parallel processing of samples utilizing a general
purpose computer and serial processing with a special purpose device hinges
on (1) the availability of a computer, (2) the capability to feed data directly
into the computer without intermediate storage, and (3) whether many small-
scale probability analyses will be performed, or relatively few large-scale
analyses. Consideration of (2) and (3) has led to implementation of the serial
processing method on this project.

Salient features of the serial processing breadboard are:

(1) A rough estimate of an entire probability density function can be
obtained quickly through the use of a coarse histogram cell structure.

(2) Partial results (e. g., a portion of a probability density function)
can be obtained quickly without having to go through a complete calculation.

(3) Answers to practical problems of the form Pr { as R), where R
may be a complicated region, can be obtained directly without going through
the intermediate step of calculating pn(X).

(4) Accuracy requirements can be translated to processing time with
a fairly high degree of confidence.

(5) Expansion or modification of the device to accommodate special
t requirements is readily implementable.

A device of the sort described in Section 3 will provide answers to a
large variety of statistical questions, if suitable modifications are made in the
success region detector. Since these modifications will in most cases be ex-
tremely inexpensive, but cannot be foreseen for all problems, it is suggested
that this breadboard be regarded and utilized as a general purpose digital
probability analyzer, taking full advantage of the provision for changing the success

Sregion 
detector.

-77-.

I



LMT OF REFERENCES

(1) Davenport, W. B. . Jr., Johnson. R. A. , and Middleton, D., "Statistical
Error in Measurements on Random Time Functions". 1. Applied Physics.
Vol. 23. pp. 377-388; April 1952.

[a] Foller, W., An Introduction to Probability Theory sad its Applications.
John Wiley and Sont, Vol* L 2nd Ed. , 1957,.

[33 Jordan, K. L. * "A Digital Probability Density Analyzer", S. M. Thesis,
MITi August 1956.

[4] Nuttall, A. H1, "Optimum Linear Filters for Finite Time Intesrations",
Quarterly Progress Report. RLE, MIT. pp. 65-75, October 15, 1957.

[ 5] Schreiber, W. F., "The Measurement of Third Order Probability
Distributions of Television Signals. IRE Trans. , POIT, Vol. IT-a,
No. 3. pp. 94-105; September 1956.

[61 Shannon, C. E., "Communication In The Presence of Noise", Proc. IRE,
Vol. 37. No. 1, pp. 10-21; January 1949.

[71 Van Meter, D., and Middleton. D.. "Modern Statistical Approaches to
Reception in Communication Theory", Trauns. IRE, PGIT-4, pp. 119-145;
September 1954.

[8) White, H. E., "An Analog Probability Analyser", Technical Report No. 326.
RLE. MIT; April 1957.

[9] Wiener, N., E xtrapolation, Interpolation, and Smoothing of Stationary Time
Series, John Wiley and Sons; 1949.

[10) Wolf, A.A. , and Diets, J. H.. "A Method of Measurement and Display of
Probability Functions of Ergodic Random Processes by Orthogonal Series
Synthesis", Proc. IME, Vol. 50, No. 12, Correspondence, pp. 2503-2504;
December 196Z.

[ 11 Easter. B., "An Electronic Amplitude Probability Distribution Analyzer".
S. M. Thesis, MIT; 1953.

-78-



APPENDIX I. COMPUTER PROGRAM FLOW CHARTS

I. 1 The following is a description of a method (Figure 1 -1) for storing
the data output from the Probability Anarryer into a computer in the same
arrangement that it held in the Probability Analyser.

Each word in the computer is initialised to a code to indicate, at the
programn's completion, the locations which do not contain pertinent information.
Control data consists of two four-digit octal location readings (the initial and
final locations for the data) and a four-digit switch setting. Each digit in the
latter is used to step the corresponding digit position in the read location during
program execution. An overflow condition is generated when any digit position
in the current read location exceeds its corresponding digit in the final location.
The type overflow to be generated can be computed and compared to the overflow
indicator on the punched tape input to verify the data transmission.

Explanation of tape input (i. e., control data)I
Start Location . D43 D3 DI

Final Location S4 S3 S S1

Switch Settings SW 4 SW 3 SW 2 SW 1 [Possible settings, 1,2,4]

Overflow Codes 01 into D2

10 into D3

11 into D

The D's are the octal digits of the initial read location; S's are the
final settings; SW's are the increments for stepping through each of the digit
positions.

Ex. Start 2023
Stop 4065

Sw-ilms 2141

[
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acahine to
"Codes"

Read
Controls

Set Initial Read
Location; Compute
Count on Satisfying
Units Position for
Storing Determine

Overflow

Road Signa
A Store

1piece_____ __

Dat

Increment Road
Units Position N Location by

Satisfied ? Sense SwitchI

SEnd of Data? ye a

•from Tape Match Com-• ' "/
Sputed Overflow?

Reset First, Second, Reset First Position in
Third Positions in Read Signal ra. on Signal Read Location to Ori-
Location to Original Overflow ginal Reading. Update
Settings. Update Second Position by
Fourth Position by Sense Switch2 .
Sense Switch 4 .

Reset First $ Second
Positions in Read Loca-
tion to Original Settings.
Update Third Position
by Sense Switch 3.

Figure I-1. Data Input Program
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I
Read Data into 2023

2024
2025 01 overflow
2063
2064
2065 11 overflow
4023
4024
4025 01 overflow
4063
4064
4065
End of Data

"Codes" = any signal to indicate locations which do not contain
pertinent data after the execution of the program.

A method for determining what type overflow signal will be found:

Di617z iIJ READ N U~~~s

NO OVEtFLO4A3

SLo,-,.,ol. sizr DII

SzL. =oSI6JAL= Of

S~YES

D : II

Countfor l~t1 (Digit1 in Original Loc, - Di~iti in Final)ot fow Dg IN NO ov6Switch Setting1- L 1
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1.2 Figure 1-2. is the flow chart of a technique which can be used in
calculating two-dimensional cross sections of n-th order probability density
functions, P nxN ... , X n) for I A n < 4. The equation. below apply to saidflow chart.

f(x;,) aPN(alo'.aj-l* xl ' `+ aj i...I aN)

wheretheLPJ) O(a1 ,..., aj- aj+l.'"' aN)

are specified quantities.

V() Alx n)

g(xJI) = PN(xJ.l - ,,

f(X.YS)
.inI

where I z 1, ,..., c and 1 < c < 8.

I. 3 In order to plot an array of two dimensiona I data on a typewriter, the
data should be ordered on the independent variable. The range of the dependent
variable is scaled across a given number of type positions. If it is desired to
scale the independent variable, the range is based on the number of lines per
page. Each parameter is scaled over the required range, the number of spaces
or carriage returns is computed and a decimal point typed in the appropriate
position.
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Figure I-2. Calculation of 2-Dinmenstonal Cross Sections of n-th[ Order Probability Density Functions
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Set Range and Value/ 
I

Typewriter Space for [I
Dependent Variable

Set Rangs and Value/
Independent Varabl in No Carriage Return for In.
Equal Increments? dependent vauiable.

e Sum 0 0.EYes

EaL' Icre t In N.__ Rots. - Sum. Sum a No
Idependent Variable? Ye .S .°

Carriate Notrn

Yes
Carriage
Return
OnceI

Tyepenn NVaSpable.ys N.Sae .e

_J Range Min? NS)

Poi No -,

Rang Max? NoS) a e 0 1 .

Nol
SCompute No, ]

Spaces (i. e., NS)

Type NS Spaces

,,=j~l l and Decimalpon

Figure 1-3. To Plot An Array of Two D emeasiesil Data
Note: Independent Variable must be Ordered
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